Vertex AI SDK
Pass-through endpoints for Vertex AI - call provider-specific endpoint, in native format (no translation).
| Feature | Supported | Notes | 
|---|---|---|
| Cost Tracking | ✅ | supports all models on /generateContent endpoint | 
| Logging | ✅ | works across all integrations | 
| End-user Tracking | ❌ | Tell us if you need this | 
| Streaming | ✅ | 
Just replace https://REGION-aiplatform.googleapis.com with LITELLM_PROXY_BASE_URL/vertex_ai
Example Usage
- curl
 - Vertex Node.js SDK
 
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.0-pro:generateContent \
  -H "Content-Type: application/json" \
  -H "x-litellm-api-key: Bearer sk-1234" \
  -d '{
    "contents":[{
      "role": "user", 
      "parts":[{"text": "How are you doing today?"}]
    }]
  }'
const { VertexAI } = require('@google-cloud/vertexai');
const vertexAI = new VertexAI({
    project: 'your-project-id', // enter your vertex project id
    location: 'us-central1', // enter your vertex region
    apiEndpoint: "localhost:4000/vertex_ai" // <proxy-server-url>/vertex_ai # note, do not include 'https://' in the url
});
const model = vertexAI.getGenerativeModel({
    model: 'gemini-1.0-pro'
}, {
    customHeaders: {
        "x-litellm-api-key": "sk-1234" // Your litellm Virtual Key
    }
});
async function generateContent() {
    try {
        const prompt = {
            contents: [{
                role: 'user',
                parts: [{ text: 'How are you doing today?' }]
            }]
        };
        const response = await model.generateContent(prompt);
        console.log('Response:', response);
    } catch (error) {
        console.error('Error:', error);
    }
}
generateContent();
Quick Start
Let's call the Vertex AI /generateContent endpoint
- Add Vertex AI Credentials to your environment
 
export DEFAULT_VERTEXAI_PROJECT="" # "adroit-crow-413218"
export DEFAULT_VERTEXAI_LOCATION="" # "us-central1"
export DEFAULT_GOOGLE_APPLICATION_CREDENTIALS="" # "/Users/Downloads/adroit-crow-413218-a956eef1a2a8.json"
- Start LiteLLM Proxy
 
litellm
# RUNNING on http://0.0.0.0:4000
- Test it!
 
Let's call the Google AI Studio token counting endpoint
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.0-pro:generateContent \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer sk-1234" \
  -d '{
    "contents":[{
      "role": "user",
      "parts":[{"text": "How are you doing today?"}]
    }]
  }'
Supported API Endpoints
- Gemini API
 - Embeddings API
 - Imagen API
 - Code Completion API
 - Batch prediction API
 - Tuning API
 - CountTokens API
 
Authentication to Vertex AI
LiteLLM Proxy Server supports two methods of authentication to Vertex AI:
Pass Vertex Credetials client side to proxy server
Set Vertex AI credentials on proxy server
Usage Examples
Gemini API (Generate Content)
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.5-flash-001:generateContent \
  -H "Content-Type: application/json" \
  -H "x-litellm-api-key: Bearer sk-1234" \
  -d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
Embeddings API
curl http://localhost:4000/vertex_ai/publishers/google/models/textembedding-gecko@001:predict \
  -H "Content-Type: application/json" \
  -H "x-litellm-api-key: Bearer sk-1234" \
  -d '{"instances":[{"content": "gm"}]}'
Imagen API
curl http://localhost:4000/vertex_ai/publishers/google/models/imagen-3.0-generate-001:predict \
  -H "Content-Type: application/json" \
  -H "x-litellm-api-key: Bearer sk-1234" \
  -d '{"instances":[{"prompt": "make an otter"}], "parameters": {"sampleCount": 1}}'
Count Tokens API
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.5-flash-001:countTokens \
  -H "Content-Type: application/json" \
  -H "x-litellm-api-key: Bearer sk-1234" \
  -d '{"contents":[{"role": "user", "parts":[{"text": "hi"}]}]}'
Tuning API
Create Fine Tuning Job
curl http://localhost:4000/vertex_ai/tuningJobs \
      -H "Content-Type: application/json" \
      -H "x-litellm-api-key: Bearer sk-1234" \
      -d '{
  "baseModel": "gemini-1.0-pro-002",
  "supervisedTuningSpec" : {
      "training_dataset_uri": "gs://cloud-samples-data/ai-platform/generative_ai/sft_train_data.jsonl"
  }
}'
Advanced
Pre-requisites
Use this, to avoid giving developers the raw Anthropic API key, but still letting them use Anthropic endpoints.
Use with Virtual Keys
- Setup environment
 
export DATABASE_URL=""
export LITELLM_MASTER_KEY=""
# vertex ai credentials
export DEFAULT_VERTEXAI_PROJECT="" # "adroit-crow-413218"
export DEFAULT_VERTEXAI_LOCATION="" # "us-central1"
export DEFAULT_GOOGLE_APPLICATION_CREDENTIALS="" # "/Users/Downloads/adroit-crow-413218-a956eef1a2a8.json"
litellm
# RUNNING on http://0.0.0.0:4000
- Generate virtual key
 
curl -X POST 'http://0.0.0.0:4000/key/generate' \
-H 'x-litellm-api-key: Bearer sk-1234' \
-H 'Content-Type: application/json' \
-d '{}'
Expected Response
{
    ...
    "key": "sk-1234ewknldferwedojwojw"
}
- Test it!
 
curl http://localhost:4000/vertex_ai/publishers/google/models/gemini-1.0-pro:generateContent \
  -H "Content-Type: application/json" \
  -H "x-litellm-api-key: Bearer sk-1234" \
  -d '{
    "contents":[{
      "role": "user", 
      "parts":[{"text": "How are you doing today?"}]
    }]
  }'
Send tags in request headers
Use this if you wants tags to be tracked in the LiteLLM DB and on logging callbacks
Pass tags in request headers as a comma separated list. In the example below the following tags will be tracked 
tags: ["vertex-js-sdk", "pass-through-endpoint"]
- curl
 - Vertex Node.js SDK
 
curl http://localhost:4000/vertex-ai/publishers/google/models/gemini-1.0-pro:generateContent \
  -H "Content-Type: application/json" \
  -H "x-litellm-api-key: Bearer sk-1234" \
  -H "tags: vertex-js-sdk,pass-through-endpoint" \
  -d '{
    "contents":[{
      "role": "user", 
      "parts":[{"text": "How are you doing today?"}]
    }]
  }'
const { VertexAI } = require('@google-cloud/vertexai');
const vertexAI = new VertexAI({
    project: 'your-project-id', // enter your vertex project id
    location: 'us-central1', // enter your vertex region
    apiEndpoint: "localhost:4000/vertex_ai" // <proxy-server-url>/vertex_ai # note, do not include 'https://' in the url
});
const model = vertexAI.getGenerativeModel({
    model: 'gemini-1.0-pro'
}, {
    customHeaders: {
        "x-litellm-api-key": "sk-1234", // Your litellm Virtual Key
        "tags": "vertex-js-sdk,pass-through-endpoint"
    }
});
async function generateContent() {
    try {
        const prompt = {
            contents: [{
                role: 'user',
                parts: [{ text: 'How are you doing today?' }]
            }]
        };
        const response = await model.generateContent(prompt);
        console.log('Response:', response);
    } catch (error) {
        console.error('Error:', error);
    }
}
generateContent();